

Jornada Electromovilidad: Infraestructura Eléctrica Transports de Barcelona, SA

Organiza:

Con el apoyo de:

Con la colaboración de:

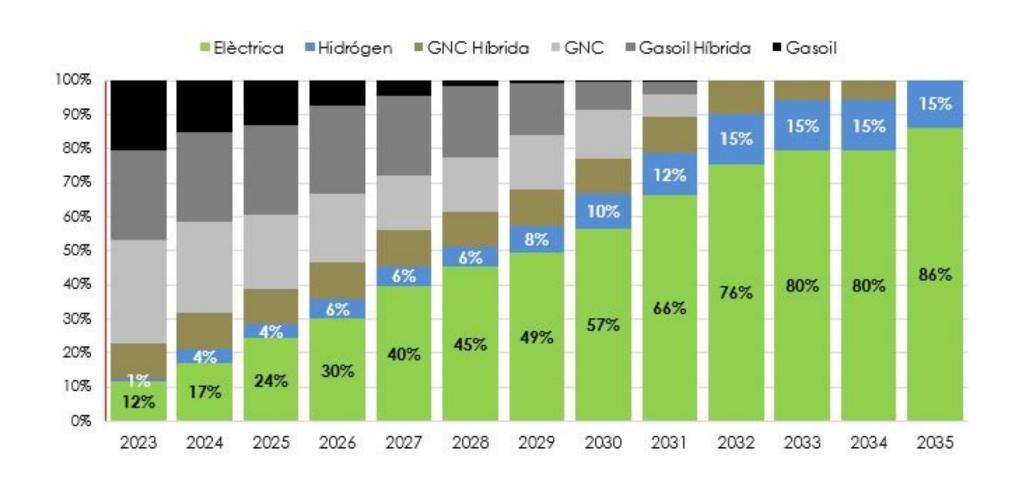
Índice

- Tipología de Autobuses.
- 2. Proceso de descarbonización de la flota.
- 3. Infraestructuras Centros Operativos de Negocio.
- 4. Identificación Riesgo Eléctrico Alta Tensión.
- 5. Identificación del Riesgo Eléctrico en Baja Tensión.
- 6. Identificación del Riesgo en los Cargadores.
- 7. Identificación del Riesgo de Incendio.
- 8. Carga de Fuego.
- Gestión de los Humos.
- 10. Gestión del Incendio.
- 11. Análisis de la Situación y Plan de actuación
- 12. Medidas Preventivas.
- 13. Plan de Autoprotección.

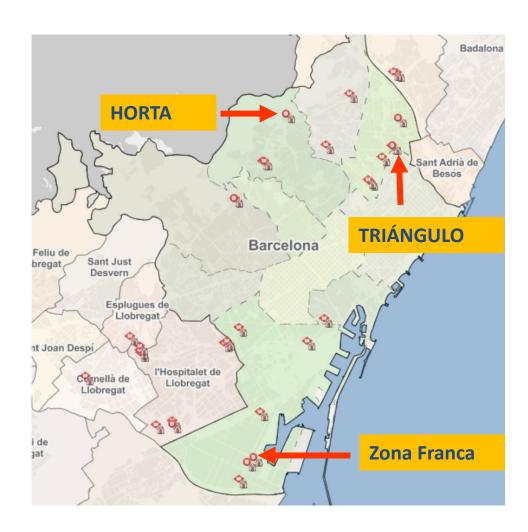
Tipología Autobuses

TIPOLOGÍA AUTOBUSES TRANSPORTS DE BARCELONA

- AUTOBUSES/FLOTA AUXILIAR ELÉTRICOS
- AUTOBUSES GNC
- AUTOBUSES HIÍRIDOS / DIESEL
- AUTOBUSES HIDRÓGENO



Cronograma Descarbonización Flota



Infraestructuras Eléctricas en Cocheras

Las cocheras están estratégicamente ubicadas para dar servició a toda la ciudad

Triangulo y Horta cubiertas con losa y tienden a ser cocheras 100% eléctricas

Zona Franca será cochera con GNC, H₂ y vehículos eléctricos al estar abierta

CON Triangle

CON Triangle

Cargadores de 150KW

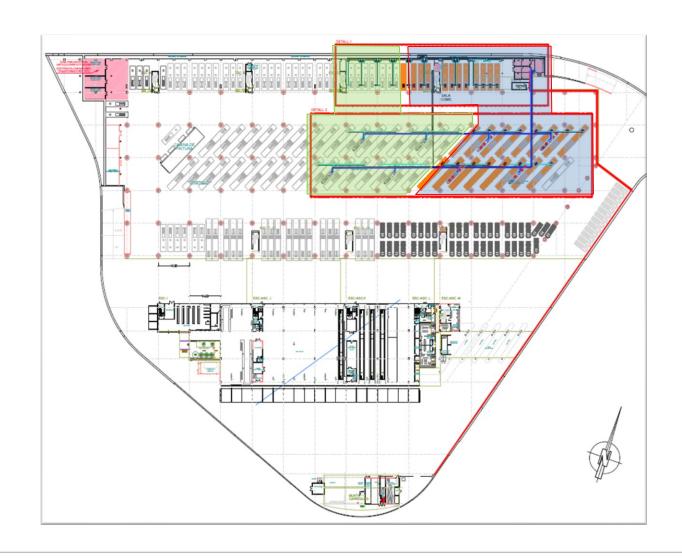
Cargadores de 50KW

PHASE 1

PHASE 3

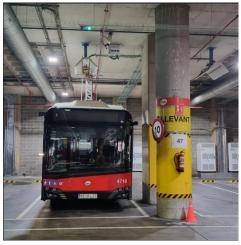
PHASE 4 Cargadores de 150KW

PHASE 2



CON Horta

COLOR BY PHASE	UTS	TYPE OF CHARGERS	YEAR
PHAS	E1 16 14	OPPORTUNITY CHARGING OVER NIGHT CHARGING	2023 2023
PHAS	E2 17	OVER NIGHT CHARGING	2025

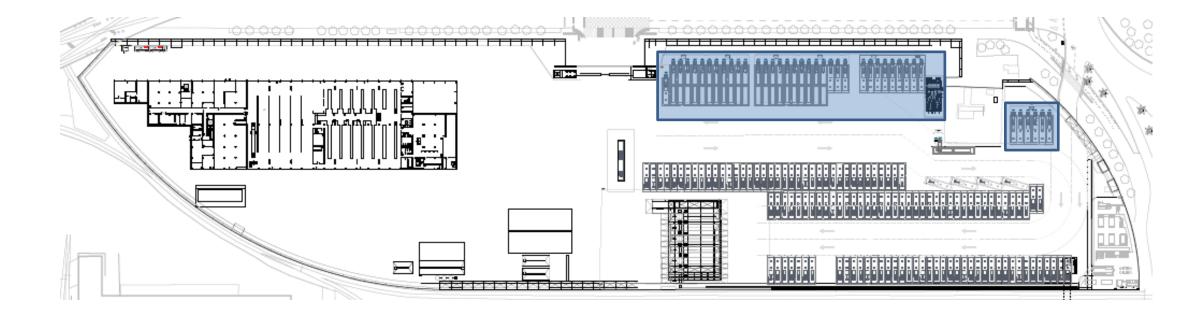


CON Horta

PHASE 1

Cargadores de 150KW

Cargadores de 50KW



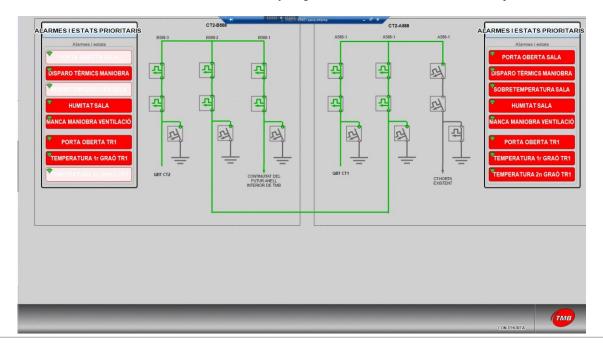
CON Zona Franca

UTS	TYPE OF CHARGERS	YEAR	
41	OPPORTUNITY CHARGING	2025	

CON Zona Franca

Cargador modelo only one de 150KW

Identificación del Riesgo Eléctrico en Alta Tensión

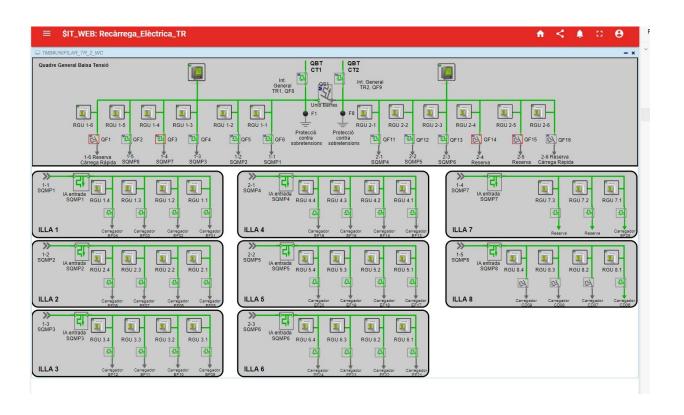

MONITORIZACION Y VIGILANCIA DE LASINSTALCIONES DE ALTA TENSIÓN

Centros de transformación 5 MW 30-25kV/0,4kV

Identificación del riesgo eléctrico de las instalaciones y equipos que conforman una estación de recarga eléctrica para autobuses EREA.

Identificación del riesgo de incendio de las instalaciones y equipos que conforman una estación de recarga eléctrica.

Reglamento electrotécnico de alta tensión REAT y reglamento electrotécnico de baja tensión REBT.



Identificación del Riesgo Eléctrico en Baja Tensión

MONITORIZACION Y VIGILANCIA DE LAS INSTALACIONES DE BAJA TENSIÓN

Potencia de carga de los cargadores 100/150 kW con rectificación 0,4kVC/DC 0,84kV. recarga de autobuses en CC.

Cada cargador lleva su propio sistema de extinción

Identificación del Riesgo Eléctrico en los cargadores

MONITORIZACION Y VIGILANCIA DEL PROCESO DE RECARGA EN LOS CARGADORES

Seguridad en el proceso de recarga eléctrica de autobuses con la obligatoriedad del cumplimiento de los requerimientos definidos por la normativa europea al respecto en el control y la monitorización de dichos procesos OCPP 1.6- OCPP 2.00 y VDV 261. Herramienta de Smart Charging.

shboard Cha	ging Plan Charging Statio	on Monitor Vehicle Mo	nitor Data History	y Reports	Notification Center							Q	Help + & laguilar + ® + ←
· ·	₹ Ø + Your Pins	(0) I Pin Selection											+ Add // Edit Delete
Depot	△1 Operator	Charging Station ID	Name	Conne	Vehicle Name	Operations	Cable Temp.	Power	Voltage	Current	Boost	Status	
Q	Q	Q	٩									Charging	~
НО	TMB	HOPOWEVC0B1002	0B1002	1	4616	↑ O 🕆 S	-	-	-	-		√ Finishing	-
Ю	TMB	HOPOWEVC0B1003	0B1003	1	4608	↑ 🛭 🕆 C	36 °C	29.650 kW	646 V	45.9 A		98% 31.581 kWh	
Ю	ТМВ	HOPOWEVC0B1004	0B1004	1	4600	↑ O 🗈 S	-	-	-	-		√ Finishing	-
10	TMB	HOPOWEVC0B1101	0B1101	1	4611	↑ ⊗ ७ ೮	36 °C	103.460 kW	654 V	158.2 A		97 % 248.491 kWh	[20:39 - N/
Ю	ТМВ	HOPOWEVC0B1102	0B1102	1	4613	↑ O 🕆 S	-	-	-	-		✓ Finishing	-
Ю	ТМВ	HOPOWEVC0B1103	0B1103	1	4602	↑ <mark>③</mark> 🕆 €	37 °C	149.440 kW	650 V	229.9 A		71 % 63.295 kWh	[21:57 - N/
0	TMB	HOPOWEVC0B1204	0B1204	1	4603	↑ 🛭 🕆 S	37 °C	120.260 kW	640 V	187.9 A		33% 16.384 kWh	[22:15 - N/
10	ТМВ	HOPOWEVC0B1301	0B1301	1	4605	↑ 🛭 🖰 C	36 °C	149.890 kW	652 V	229.9 A		83% 145.476 kWh	[21:25 - N/
10	TMB	HOPOWEVC0B1303	0B1303	1	4606	↑ ⊗ ७ ೮	37 °C	149.660 kW	651 V	229.9 A		72 % 160.288 kWh	[21:18 - N/
10	TMB	HOPOWEVC0B1304	0B1304	1	-	↑ O 🕆 S	-	-	-	-		✓ Charging	-
0	ТМВ	HOPOWEVC0E1302	0E1302	1	8561	↑ ⊗ ७ ८	36 °C	44.680 kW	678 V	65.9 A		62% 9.477 kWh	[22:10 - N/
R	TMB	TREKOEVCA33	A33	1	4619	↑ 3 🕆 8	64 °C	104.610 kW	228.45 V	153.01 A		34 % 45.602 kWh	
R	TMB	TREKOEVCA34	A34	1	4634	↑ 🛭 🖰 C	35 °C	89.990 kW	630.38 V	142.76 A		22% 1.968 kWh	
R	ТМВ	TREKOEVCA36	A36	1	4712	↑ ⊗ ७ ८	70 °C	98.240 kW	654.78 V	150.03 A		79 % 210.2 kWh	[20:15 - N/
R	TMB	TREKOEVCA37	A37	1	4646	↑ 3 🕆 8	40 °C	90.840 kW	641.79 V	141.54 A		39 % 5.38 kWh	[22:19 - N/
R	TMB	TREKOEVCA39	A39	1	4713	↑ ⊗ ⅓ €	69 °C	99.480 kW	652.15 V	152.55 A		56 % 148.208 kWh	[20:53 - N/
R	TMB	TREKOEVCA40	A40	1	4722	↑ 3 🕆 8	66 °C	99.480 kW	655.02 V	151.88 A		84 % 188.104 kWh	[20:30 - N/
R	TMB	TREKOEVCA41	A41	1	4723	↑ 🛭 🕆 S	67 °C	98.320 kW	653.79 V	150.39 A		64 % 137.992 kWh	[20:59 - N/
R	TMB	TREKOEVCA42	A42	1	4719	↑ ⊗ ७ ८	59 °C	99.260 kW	644.79 V	153.95 A		29 % 65.68 kWh	[21:43 - N/
-	71.0	TREMOENOLIO			4700			00.050		450.04.4		ena	[00.45 N

Identificación del Riesgo de Incendio

INDENTIFICACIÓN DEL RIESGO DE INCENDIO DE LAS INSTALACIONES Y EQUIPOS QUE CONFORMAN UNA ESTACIÓN DE RECARGA ELÉCTRICA.

Los autobuses forman parte de la infraestructura, sobre todo ahora en que los aparcamientos se han convertido en Estaciones de Recarga Eléctrica de Autobuses.

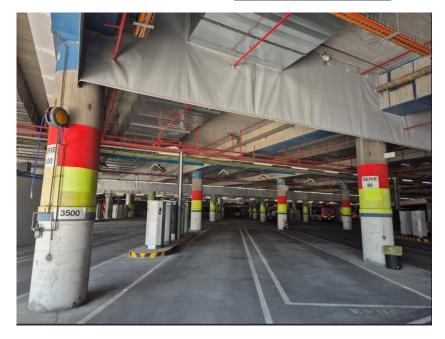
Reglamentación para aplicable en infraestructuras para establecer el riesgo de incendio y aplicar las medidas de protección del mismo:

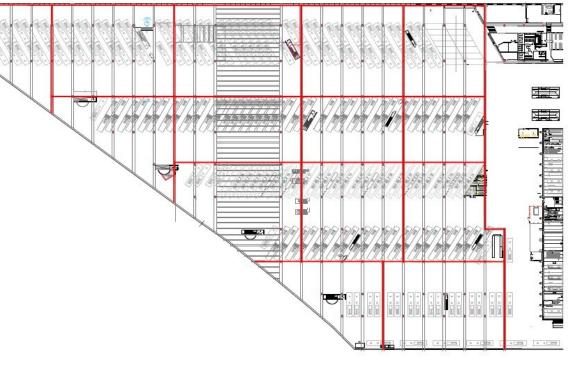
- **Real Decreto 164/2025**, de 4 de marzo, por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales.
- · Reglamento instalaciones contra incendios RIPCI.
- Ordenanza municipal de condiciones de protección contra incendios del ayuntamiento de Barcelona. GUIA TÈCNICA INSTAL·LACIONS DE RECÀRREGA DE VEHICLES ELÈCTRICS (IRVE) Fitxa: 1.18.
- Instrucciones técnicas complementarias del departamento de Prevención de Incendios de la Generalitat de Catalunya; SP-101 a SP- 138.
- Normativas UNE de aplicación en especial : UNE 23585: Sistemas de Control de Temperatura y Evacuación de Humos (SCTEH): Requisitos y métodos de cálculo y diseño para proyectar un sistema de control de temperatura y de evacuación de humos en caso de incendio.

Identificación del Riesgo de Incendio

CARGA DE FUEGO DE LA FLOTA ACTUAL

	Ci =	1,6	ű =	1,3	Ci =1	
	FIRE LOAD	WEIGHT	FIRE LOAD	WEIGHT	FIRE LOAD	WEIGHT
	(MCAL)	(KG)	(MCAL)	(KG)	(MCAL)	(KG)
DIESEL VEHICLE: 12 m long	18.743	13.205	18.653	13.205	18.563	13.205
DIESEL VEHICLE: 18 m long	28.179	19.808	28.044	19.808	27.909	19.808
GNC VEHICLE: 12 m long	17.512	13.104	17.422	13.104	17.332	13.104
GNC VEHICLE: 18 m long	30.935	19.656	30.800	19.656	30.665	19.656
HYDROGEN VEHICLE: 12 m long	17.893	12.892	17.516	12.892	17.138	12.892
HYDROGEN VEHICLE: 18 m long						
ELECTRIC VEHICLE: 12 m long, 150 kWh	20.968	14.898	19.605	14.898	18.243	14.898
ELECTRIC VEHICLE: 12 m long, 300 kWh	28.235	15.898	25.510	15.898	22.785	15.898
ELECTRIC VEHICLE: 18 m long, 150 kWh	28.556	21.340	27.059	21.340	25.561	21.340
ELECTRIC VEHICLE: 18 m long, 600 kWh	50.358	25.340	44.772	25.340	40.685	25.340



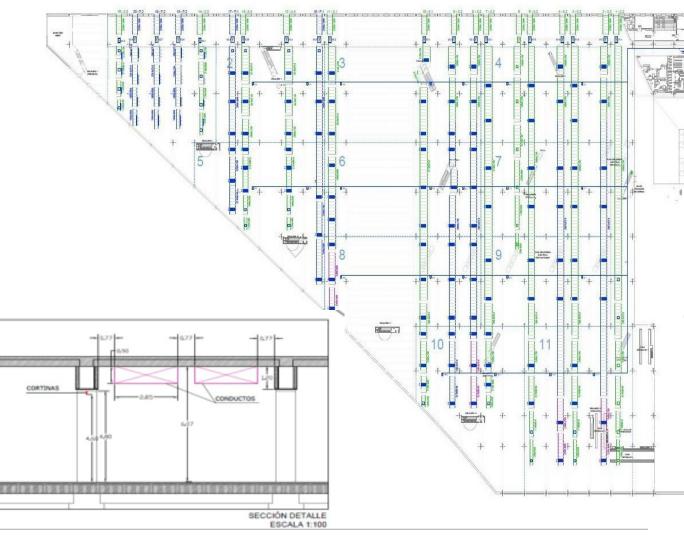

Gestión de Humos Zona de Aparcamiento

Riesgo intrínseco Medio 5 s/tabla 2.1 Anexo III RESCIEI

Implantación de sistema de extracción de humos forzada y sectorización a través de cortinas.

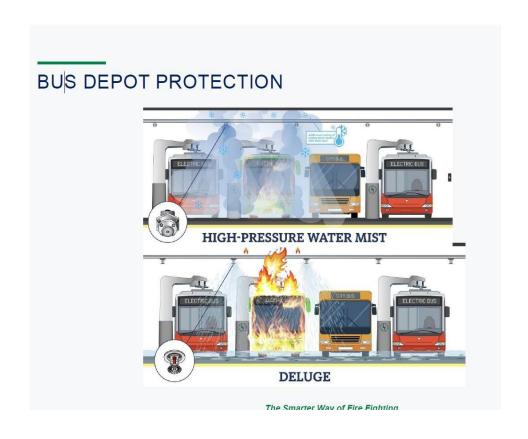
LEYENDA CORTINAS DE HUMOS





Gestión de Humos Zona de Aparcamiento

Implantación de sistema de extracción de humos forzada y sectorización a través de cortinas.



Identificación del Riesgo de Incendio

Resistencia al fuego de la estructura RF 180 (IRVE) Bombers Barcelona

Implantación de sistema de agua nebulizada para augmentar la resistencia al fuego de la instalación.

En ejecución durante 2026

Actualmente las BIES incorporan agente F-500

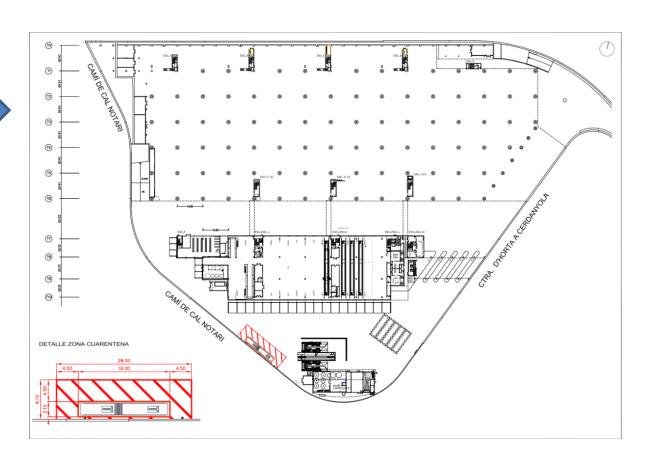
Análisis de la Situación y Plan de actuación

Identificación de situaciones y riesgos

Medidas Preventivas

Plan de actuación de prevención y actuación frente a riesgo de incendios

Planes Protección



Medidas Preventivas

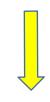
- Zonas de Cuarentena
 - Definición de zonas
 - Definición de plan de actuación

- Adecuación de sistemas de detección de incendios
- Sensorización de H2
- Mejora en la monitorización de las instalaciones
- Análisis de posibles riesgos colaterales

Proceso Implantación Planes de Autoprotección

- 1. Identificación de los titulares y emplazamiento de la actividad.
- 2. Descripción detallada de la actividad y del medio físico que se desarrolla.
- 3. Inventario, análisis y evaluación del riesgo.
- 4. Inventario y descripción de las medidas y medios de protección.
- 5. Programa de mantenimiento de las instalaciones.

PAU (Planes de Autoprotección)


Sistemas PCI montados en la infraestructura envolvente de la cochera, (Detección PCI, Extracción de humos sectorización y sistemas de extinción)

Sistemas PCI montados en los equipos y en las instalaciones de recarga (instalaciones AC : AT, BT) cargadores DC

Implantación y protocolos de actuación coordinación con Bombers de Barcelona

Revisión PAU

PAU (Planes de Autoprotección).

Implantación:

- Formación.
- Mantenimiento.
- Simulacros.

Muchas Gracias

